• Home
  • Cryptography
  • Research
  • About Me
  • Puzzle Links


Profile on LinkedIn

Profile on ResearchGate

Email:

General Links

  • CiteSeer Search Engine
  • Google Scholar
  • SpringerLink

Access structures and Secret Sharing Schemes - Bibliography

  1. P. Vamos. On the representation of independence structures.Manuscris nepublicat, 1968.
  2. G. R. Blakley. Safeguarding cryptographic keys. In R. E. Merwin, J. T. Zanca, and M. Smith, editors, Proc. of the 1979 AFIPS National Computer Conference, volume 48 of AFIPS Conference proceedings, pages 313 -– 317. AFIPS Press, 1979.
  3. A. Shamir. How to share a secret. Communications of the ACM, 22: 612-–613, 1979.
  4. E. D. Karnin, J.W. Greene, M. E. Hellman. On secret sharing systems. IEEE Trans. on Information Theory, 29(1): 35 -– 41, 1983.
  5. M. O. Rabin. Randomized Byzantine generals. In Proc. of the 24th IEEE Symp. on Foundations of Computer Science, pages 403 -– 409, 1983.
  6. M. Ito, A. Saito, T. Nishizeki. Secret sharing scheme realizing any access structure. Proc. IEEE Global Telecommunication Conf. Globecom87 (1987) 99-102. Journal version: Multiple assignment scheme for sharing secret. J. of Cryptology, 6(1):15-–20, 1993
  7. J. Benaloh, J. Leichter. Generalized secret sharing and monotone functions, CRYPTO '88, volume 403 of LNCS, pages 27-–35, 1988.
  8. M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness theorems for noncryptographic fault tolerant distributed computations. In Proc. of the 20th ACM Symp. on the Theory of Computing, pages 1-–10, 1988.
  9. D. Chaum, C. Crepeau, I. Damgard. Multiparty unconditionally secure protocols. In Proc. of the 20th ACM Symp. on the Theory of Computing, pages 11-–19, 1988.
  10. E. F. Brickell. Some ideal secret sharing schemes. Journal of Combin. Math. and Combin. Comput., 6:105-–113, 1989.
  11. E. F. Brickell, D. M. Davenport. On the Classification of Ideal Secret Sharing Schemes. J. Cryptology 4 (1991) 123-–134.
  12. G. J. Simmons. An Introduction to Shared Secret and/or Shared Control Schemes and Their Application Contemporary Cryptology. The Science of Information Integrity. IEEE Press (1991) 441-–497.
  13. G. J. Simmons,W. Jackson, K. M. Martin. The geometry of shared secret schemes. Bulletin of the ICA, 1:71-–88, 1991.
  14. Y. Desmedt, Y. Frankel. Shared generation of authenticators and signatures. In J. Feigenbaum, editor, Advances in Cryptology – CRYPTO 91, volume 576 of Lecture Notes in Computer Science,pages 457-–469. Springer-Verlag, 1992.
  15. P. D. Seymour. On secret-sharing matroids. J. of Combinatorial Theory, Series B, 56:69-–73, 1992.
  16. C. Blundo, A. De Santis, L. Gargano, U. Vaccaro,On the Information Rate of Secret Sharing Schemes, Lecture Notes in Computer Science, vol 740:148-167, 1993
  17. R. M. Capocelli, A. De Santis, L. Gargano, U. Vaccaro. On the size of shares for secret sharing schemes. J. of Cryptology, 6(3):157-–168, 1993.
  18. M. Karchmer, A. Wigderson. On span programs. In Proc. of the 8th IEEE Structure in Complexity Theory, pages 102-–111, 1993.
  19. K. Kurosawa, K. Okada, K. Sakano, W. Ogata, S. Tsujii. Nonperfect secret sharing schemes and matroids. In Advances in Cryptology - EUROCRYPT 93,volume 765 of LNCS, pages 126-–141. 1994.
  20. D. R. Stinson. Decomposition construction for secret sharing schemes. IEEE Trans. on Information Theory, 40(1):118-–125, 1994.
  21. C. Blundo, A. De Santis, D. R. Stinson, U. Vaccaro. Graph decomposition and secret sharing schemes. J. of Cryptology, 8(1):39-–64, 1995.
  22. W. Jackson, K. M. Martin. Perfect secret sharing schemes on five participants. Designs, Codes and Cryptography, 9:267-–286, 1996.
  23. A. Beimel, B. Chor. Universally ideal secret sharing schemes. IEEE Trans. on Information Theory, 40(3):786-–794, 1994.
  24. M. van Dijk. A linear construction of secret sharing schemes. Designs, Codes and Cryptography, 12(2):161-–201, 1997.
  25. C. Blundo, A. De Santis, U. Vaccaro. On secret sharing schemes. Inform. Process. Lett., 65(1):25-–32, 1998
  26. M. Naor, A. Wool. Access control and signatures via quorum secret sharing. IEEE Transactions on Parallel and Distributed Systems, 9(1):909-–922, 1998.
  27. J. Simonis, A. Ashikhmin. Almost affine codes. Designs, Codes and Cryptography, 14(2):179-–197, 1998.
  28. Z. Zhang, R. W. Yeung. On characterization of entropy function via information inequalities. IEEE Trans. on Information Theory, 44(4):1440-–1452, 1998.
  29. F. Matus. Matroid representations by partitions. Discrete Mathematics, 203:169-–194, 1999.
  30. R. Cramer, I. Damg°ard, U.Maurer. General secure multi-party computation from any linear secret sharing scheme. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 316-–334. Springer-Verlag, 2000.
  31. C. Padro, G. Saez - Secret sharing schemes with bipartite access structure, IEEE Transactions on Information Theory, Vol. 46, No. 7, pp 2596-2604, 2000
  32. S.-L. Ng, M. Walker. On the composition of matroids and ideal secret sharing schemes. Designs, Codes and Cryptography, 24(1):49 -–67, 2001.
  33. M.J.Collins - A Note on Ideal Tripartite Access Structures, Manuscris, iacr.org/2002/193.ps.gz
  34. R. W. Yeung, A First Course in Information Theory. Norwell, MA:Kluwer, 2002
  35. Alexandre V. Borovik, Israel M. Gelfand, Neil White, Coxeter Matroids (Progress in Mathematics), Ed: Birkhauser Boston, 2003
  36. A. Beimel, Y. Ishai. On the power of nonlinear secret-sharing. SIAM J. on Discrete Mathematics, 19(1):258-–280, 2005.
  37. A. Beimel, T. Tassa, E. Weinreb. Characterizing ideal weighted threshold secret sharing. In J. Kilian, editor, Proc. of the Second Theory of Cryptography Conference – TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 600-–619. Springer-Verlag, 2005.
  38. A. Beimel, E. Weinreb. Separating the power of monotone span programs over different fields. SIAM J. on Computing, 34(5):1196-–1215, 2005
  39. N. Livne. On matroids and non-ideal secret sharing. Master's thesis, Ben-Gurion University, Beer-Sheva, 2005.
  40. J.Marti-Farre, C. Padro. Secret sharing schemes with three or four minimal qualified subsets. Designs, Codes and Cryptography, 34(1):17-34, 2005.
  41. A. Atanasiu - Prelegerea 5 - Sisteme de partajare a secretelor, Note de curs - "Criptografie" - anul IV, sectia Informatica, Informatica, Facultatea de Matematica si Informatica, Universitatea din Bucuresti, 2006
  42. A. Beimel, N. Livne. - On matroids and non-ideal secret sharing. In S. Halevi and T. Rabin, editors, Proc. of the Third Theory of Cryptography Conference - TCC 2006, volume 3876 of LNCS, pages 482-501, 2006.
  43. O. Farras, J.Marti-Farre, C. Padro - Ideal Multipartite Secret Sharing Schemes, Manuscris, iacr.org/2006/292.pdf
  44. J. Herranz, G. Saez - New Results on Multipartite Access Structures, IEEE Proceedings on Information Theory, vol 153:153-162, 2006,Manuscris, iacr.org/2006/048.ps.gz.
  45. J.Marti-Farre, C. Padro - On Secret Sharing Schemes, Matroids and Polymatroids, Manuscris, iacr.org/2006/077.pdf
  46. Jun Xu, Jiwen Zeng, Huaxiong Wang - A New Family of Ideal Multipartite Access Structure Based on MSP, Manuscris, http://eprint.iacr.org/2006/339.ps.gz
  47. Tamir Tassa, Nira Dyn - Multipartite Secret Sharing by Bivariate Interpolation, 33rd International Colloquium on Automata, Languages and Programming, ICALP 2006, Lecture Notes in Comput. Sci. 4052, pp. 288-–299
  48. A. Atanasiu - Secret sharing schemes, Note de curs - "Criptografie si securitatea informa'tiei" - anul VI, master "Sisteme Distribuite" Informatica, Facultatea de Matematica si Informatica, Universitatea din Bucuresti, 2007
  49. O. Farras, J.Marti-Farre, C. Padro - Ideal Multipartite Secret Sharing Schemes, "Advances in Cryptology", Eurocrypt 2007. Lecture Notes in Computer Science 4515 (2007) 448-465
  50. A. Beimel, N. Livne, C. Padro: Matroids Can Be Far from Ideal Secret Sharing. TCC 2008- Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008 194-212

Information Flow - Bibliography

  1. D.E. Bell, L.J.La Padula. Secure Computer Systems: Mathematical Foundations -Technical Report TR2547, MITRE Corporation , Bedford, 1975. CiteSeer link
  2. D. E. Denning. A lattice model of secure information flow. Communications of the ACM, 19(5):236-243, May 1976. CiteSeer link
  3. J. A. Gorguen and J. Meseguer. Security policies and security models. Proceedings of the 1982 IEEE Computer Society Symposium on Research in Security and Privacy, pgs 11-20, Oakland, CA, 1982. CiteSeer link
  4. J. A. Gorguen and J. Meseguer. Unwinding and inference control. Proceedings of the 1984 IEEE Computer Society Symposium on Research in Security and Privacy, pgs 75-86, Oakland, CA, 1984. CiteSeer link
  5. D. Sutherland. A model of information. Proceedings of the 9th National Computer Security Conference. pgs 175-183. 1986. CiteSeer link
  6. D. McCullough. Specifications for multi-level security and a hook-up property. Proceedings of the 1987 IEEE Computer Society Symposium on Research in Security and Privacy, pgs 161-166, Oakland, CA, 1987. CiteSeer link
  7. D. McCullough. Noninterference and the composability of security properties. Proceedings of the 1988 IEEE Computer Society Symposium on Research in Security and Privacy, pgs 161-166, Oakland, CA, 1988.
  8. D. M. Johnson and F. Javier Thayer. Security and the composition of machines. In Proc. 1st IEEE Computer Security Foundations Workshop (CSFW), pages 72--89, 1988. CiteSeer link
  9. J. McLean. Security models and information flow. Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, 1990. CiteSeer link
  10. J. McLean. A General Theory of Composition for Trace Sets Closed Under Selective Interleaving Functions. Center for High Assurance Computer Systems, Naval Research Laboratory, 1994. CiteSeer link
  11. J.K.Millen. Unwinding Forward Correctability -Proceedings of the Computer Security Foundations Workshop, pages 2-10, 1994. CiteSeer link
  12. J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems. Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, 1990. CiteSeer link
  13. J. C. Wray. An analysis of covert timing channels. Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, 2-7, Oakland, CA, 1991.
  14. J. W. Gray III. Toward a Mathematical Foundation for Information Flow Security. Journal of Computer Security, 1:255--294, 1992 CiteSeer link
  15. A. Zakinthinos. On the Composition of Security Properties. PhD thesis. University of Toronto. 1996. CiteSeer link
  16. A. Zakinthinos. E.S.Lee A General Theory of Security Properties. Proceedings of the 18th IEEE Computer Society Symposium on Research in Security and Privacy. 1997. CiteSeer link
  17. James W. Gray, III and Paul G. Syverson. A logical approach to multilevel security of probabilistic systems. Distributed Computing, 73-90, 1998. CiteSeer link
  18. P. Y. A. Ryan and S. A. Schneider. Process Algebra and Non-interference. The IEEE Proceedings of the 12th Computer Security Foundations Workshop. 1999.
  19. H. Mantel. Possibilistic Definitions of Security - An Assembly Kit. Proceedings of the IEEE Computer Security Foundations Workshop, pgs. 185-199, 2000.CiteSeer link
  20. H. Mantel. Unwinding possibilistic security properties. In ESORICS 2000, volume 1895 of Lecture Notes in Computer Science, pages 238--254. Springer-Verlag, 2000. CiteSeer link
  21. H. Mantel. On the Composition of Secure Systems. In Proceedings of the IEEE Symposium on Security and Privacy.IEEE Computer Society, 2002. CiteSeer link
  22. H. Mantel and A. Sabelfeld, "A unifying approach to the security of distributed and multi-threaded programs," J. Computer Security, 2002, CiteSeer link
  23. A. Sabelfeld. Semantic Models for the Security of Sequential and Concurrent Programs. PhD thesis, Chalmers University of Technology and Goteborg University, May 2001.CiteSeer link
  24. A. Sabelfeld and A. C. Myers.Language-Based Information-Flow Security. IEEE Journal on Selected Areas in Communications, 21(1), 2003. CiteSeer Link
  25. Catalin Dima and Constantin Enea and Radu Gramatovici.Nondeterministic noninterference and deducible information flow.Technical Report 2006-01, University of Paris 12, LACL, 2006.
  26. Catalin Dima and Constantin Enea and Radu Gramatovici.A Synchronous Model for Information Flow.Technical Report 2006-02, University of Paris 12, LACL, 2006.
  27. Ron van der Meyden, Chenyi ZhangAlgorithmic Verification of Noninterference Properties Views on Designing Complex Architectures, Bertinoro, Italy, Sept 16-17, 2006, in Electronic Notes in Theoretical Computer Science 168: 61-75 (2007).
  28. Catalin Dima, Constantin Enea, Radu Gramatovici, Alexandru Sofronia - "Strategy-based and knowledge-based models of information flow: equivalence and decidability",
    9th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2007), Timisoara, Romania, September 2007

Information Flow Links

  • Heiko Mantel's Homepage
  • Heiko Mantel's Publications
  • Catalin Dima's Homepage
  • Andrei Sabelfeld's Homepage
  • Vicky Weissman's collection of links



copyright © 2006-2010

HTML Hit Counters
Web Site Hit Counter